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Abstract. By means of theoretical calculations, we elucidate the mechanism for the nonmetal-
to-metal (NM-to-M) transition that occurs with density decrease in supercritical Se. We first
show from energetical considerations that some of the bonds in Se chains are disrupted when the
density is decreased, and secondly we clarify that the bond disruption causes a drastic reduction of
the splitting(Eσ∗−σ ) between the bonding(σ ) and anti-bonding(σ ∗) levels. As a consequence,
the energy gap separating occupied and unoccupied levels decreases and eventually disappears,
thus altering the nature of the system from nonmetallic to metallic. A remarkable point is that,
although the bandwidth(W) reduces on decrease of the density, the degree of the reduction
in Eσ∗−σ is so marked that the ratio(W/Eσ∗−σ ) increases. This feature is in contrast with
the traditional Wilson transition, in which the decrease of density has no significant influence
on the differences between the corresponding energy levels, such as the spacing between the
s level and the p level in the case of expanded Hg, while the decrease of the density narrows
the bandwidthW and reduces the ratioW/Eσ∗−σ as well, and accordingly a metal-to-nonmetal
transition is induced. Our calculations also show that structural changes such as shortening of
the bond lengths take place at the NM-to-M transition.

1. What is the problem?

To date, several mechanisms for metal–nonmetal (M–NM) transitions have been proposed,
such as those listed in the first four rows of table 1. In the Wilson transition, the opening
of bands consequent upon the density decrease of the constituent atoms leads to a metal-to-
nonmetal (M-to-NM) transition. Electron correlation also plays a part in M–NM transitions,
which are often known by different names, the most common of which is ‘Mott transitions’.
In a system where electron correlation is important, a M-to-NM transition is expected to
take place when the relative magnitude of the electron correlation exceeds the bandwidths
as a result of the density decrease. The Peierls transition appears when the periodicity of
a system is changed. The Anderson transition is found in random systems. A M-to-NM
transition of this type is observed when the bandwidths fall below the degree of randomness
accompanying the density decrease.

In all of the mechanisms known so far, the effect of the density decrease is manifested
in the narrowing of the relevant bands, and, as a consequence, a M-to-NM transition. The
situation is sketched in figure 1. Some examples of M-to-NM transitions are observed in
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Table 1. Mechanisms for the metal–nonmetal (M–NM) transition.

Density↘
M–NM Band- Characteristic
transition Mechanism width quantity Ratio Transition

1 Wilson Band broadening W↘ Eij ∼ constant

(
W

Eij

)
↘

transition or narrowing

2 Mott–Hubbard Electron W↘ U ∼ constant

(
W

U

)
↘ M ⇒ NM

transition correlation

3 Anderson Randomness W↘ 0 ∼ constant

(
W

0

)
↘

transition

4 Peierls Change
transition in periodicity

5 The present Bond destruction W↘ [E(̃σ ∗)− E(σ)] ⇓
[

W

E(̃σ ∗)− E(σ)
]
↗ NM ⇒ M

transition

E

NMM
1 / ρ
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          band
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Figure 1. A schematic illustration of the band-
widths as related to the density decrease.

the supercritical region of such metals as Hg (the Wilson transition) and alkali metals (the
Mott transition). The situation is illustrated in figure 2(a).

On the other hand, a completely opposite case was found experimentally for expanded
Se, where the decrease of the density brings about a nonmetal-to-metal (NM-to-M) transition
instead of a M-to-NM transition. The situation is illustrated in figure 2(b), in which a NM-
to-M transition is presented in which liquid Se is expanded by increasing the temperature
along the rightward long arrow. This result is very surprising in the sense that the situation
is in contradiction with the established understanding. It is the purpose of this article to
resolve this problem [1].

Recently, Tamura and collaborators carried out an extensive study of expanded Se in
the supercritical region by means of measurements of x-ray diffraction, the x-ray absorption
fine structure (XAFS), and the extended x-ray absorption fine structure (EXAFS) [2–5].
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Figure 2. A schematic illustration of the experimental results in the pressure–temperature (P–T )
space in the case of (a) Hg and alkali metals and (b) Se.

Their experimental results suggest that the chain structure is disrupted at high temperatures.
This tendency has also been observed by computer simulations due to Bicharaet al [6],
Hohl and Jones [7], Kirchhoffet al [8, 9] and Shimojoet al [10].

The essential aspects of the experimental results can be summarized as follows.

(i) When the temperature of liquid Se is raised fromTm to temperatures nearTc at a fixed
pressure which is higher thanPc, the densityρ decreases, and, accompanying this decrease
of ρ, there is an increase of the conductivityσ . As a consequence, the system transforms
from a nonmetallic (or semiconducting) to a metallic state as shown in figure 2(b). The
measurements of the absorption edge lend support to the conductivity experiments.

(ii) X-ray diffraction, XAFS and EXAFS experiments all indicate that the nearest-
neighbour distancer1 (which is identical to the bond length) is about 2.32Å in a nonmetallic
(semiconducting) state while it is about 2.27Å in a metallic state, the former being larger
than the latter. It is worth mentioning here that the bond length in trigonal crystal is 2.38Å.

(iii) The NMR measurement provides the number of unpaired spins in the system, from
which it is implied that the chain length just above the melting curve is of order 105 while
it is of order 10 in the supercritical region [11].

2. What is the method that we use?

In our calculations of the eigenvalues, we use the following method.
The density functional theory [12] reduces the calculation of the total energy for a

system of interacting electrons to the solution of a single-particle equation of the form [13][
−1

2
∇2+8(r)+ Vext(r)+ Vxc(r)

]
ψi(r) = εiψi(r) (1)

whereψi(r) is the Kohn–Sham wave function for the single electron in theith state,εi
is the corresponding eigenvalue,8(r) is the Coulomb potential,Vext(r) is the external
potential of the nuclei, andVxc(r) ≡ δExc/δn(r) is the exchange–correlation potential. The
Coulomb potential8(r) and the exchange–correlation potentialVxc(r) are determined by
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the density

n(r) =
∑
i

fi |ψi(r)|2 (2)

wherefi is the occupation number of theith state. The exchange–correlation energyExc

is given by the local-density approximation (LDA) as

ELDA
xc =

∫
dr n(r)εxc[n(r)] (3)

where εxc[n(r)] is the sum of the exchange and correlation energy per particle of
a homogeneous electron gas with densityn(r). In the present work, we use the
parametrization forεxc of Perdew and Zunger [14].

rsep

a

Figure 3. Our structural model, in whichrsep is the separation distance between the terminal
atoms of two adjacent chains whilea represents the inter-chain distance.

We calculate the total energy of the system by means of the simulated-annealing method,
where we perform the annealing algorithm by the steepest-descent method. We employ
the norm-conserving pseudopotential due to Bachelet, Hamann and Schlüter [15]. The
simulation box is taken to be a primitive cell of the hexagonal lattice, and the energy cut-
off is chosen to be 10 Ryd. In our simulations, periodic boundary conditions are adopted.
The size of the simulation box is chosen appropriately for the values of the separationrsep

between the finite chains and the inter-chain distancea in figure 3. Since the accuracy of
the calculations varies from size to size, comparisons of the energies are made only between
the results obtained from simulations with simulation boxes of the same size.

3. What is the essential aspect?

From the experimental results explained in section 1, an actual configuration of supercritical
Se is predicted to be an assembly of finite chains. Before going into detailed analyses of
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three-dimensional (3D) systems, it is interesting and instructive to study one-dimensional
(1D) systems. In our model system described in figure 3, this situation is realized by
taking a/a0 = ∞ and increasingrsep/r1 from unity, wherea0 is the interatomic distance
for a crystal andr1 is the bond length. Taking into account the fact that the inter-chain
interaction is extremely small whena/a0 = 1.8, we use this value in actual calculations
because the situation in whicha/a0 = ∞ is practically realized by this value.

Figure 4. The band structure of a 1D assembly of helical chains of size 6 withφ = 120◦ for
the model structure illustrated in figure 3 witha→∞, andrsep/r1 = 1, 1.4, and 1.8.

The band structures for an assembly of threefold helical chains with size 6 are shown
as solid curves in figure 4.

A remarkable point is that one out of six anti-bonding (σ ∗) bands is lowered when
rsep/r1 is raised from unity. When we recall our model structure as presented in figure 3
with a/a0 = ∞ andrsep/r1 > 1, we realize that one bond out of every six in each simulation
box is disrupted. As a result, the energy splitting between the bonding level and the anti-
bonding level becomes smaller, and accordingly the anti-bonding band corresponding to
this disrupted bond is lowered. Let us call this anti-bonding band for the disrupted bond
‘the σ̃ ∗-band’.

Simple though it is, this is exactly what is causing the NM-to-M transition in supercritical
Se on the reduction of the density. The situation becomes clearer in succeeding sections,
where we study 3D assemblies of finite helical chains.

4. What happens in 3D systems?

Motivated by the discussion about 1D assemblies of finite helical chains in the preceding
section, we study 3D assemblies of finite helical chains, which are realized by taking each
of the parametersrsep/r1 anda/a0 to be a finite value larger than unity in our model shown
in figure 3. Each set ofrsep/r1 anda/a0 defines a densityρ.
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Figure 5. The band structure of a 3D assembly of helical chains of size 6 withφ = 120◦ for
the model structure illustrated in figure 3 with (a)ρ0/ρ = 1.3 and (b)ρ0/ρ = 1.4.
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Figure 6. The energy regions for the bands versusρ0/ρ.

The band structures calculated for the case whereρ0/ρ = 1.3 and a/a0 = 1.4 are
presented in figure 5. In the case whereρ0/ρ = 1.3, with ρ0 being the density for a
crystal, there exists an energy gap between the highest lone-pair (LP) band and the lowest
anti-bonding band (̃σ ∗), the latter being thẽσ ∗-band whose definition we introduced in the
previous section. Since the Fermi level falls in this energy gap region where the density of
states is zero, the system is nonmetallic.

In the case whereρ0/ρ = 1.4, on the other hand, thẽσ ∗-band and the LP band are
overlapping, and accordingly the system is metallic.

The energy regions for the bands are presented in figure 6. In the same way as for 1D
cases, the band gapEg decreases asρ0/ρ is raised from unity for a given finite value of
a/a0. Whenρ0/ρ becomes 1.4, the gap closes and the energy overlap becomes positive,
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thus establishing the occurrence of a NM-to-M transition consequent upon the increase of
ρ0/ρ, or, in other words, upon the decrease of the density. The whole situation is obviously
analogous to that for 1D systems.

In this way, the mechanism for the NM-to-M transition in liquid Se is proved to be the
reduction of the energy splitting between the bonding (σ ) level and the anti-bonding (̃σ ∗)
level due to the disruption of some bonds accompanying the decrease of the density. As
mentioned in the previous section, this isthe mechanism that we have been looking for,
though simple it is. A remarkable point is that the essential aspect of this mechanism is
observed even in 1D systems, as fully explained in the previous section.

5. What causes bond disruption?

In order to see what causes the bond disruption in supercritical Se, we extract the essential
effects of the temperature increase along the rightward arrow in figure 2(b). The relevant
aspect is the decrease of the density, which causes the expansion between Se chains as well
as that along the chains. We assume that the expansion is uniform in all three dimensions,

Figure 7. The total energy versus the bond length for various values ofrsep, where (a)ρ0/ρ =
1.3 and (b)ρ0/ρ = 1.4.
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Figure 8. When a chain is stretched to a critical extent, some of the bonds are broken in order
to reduce the total energy.

so the increases ofrsep/r1 anda/a0 are both proportional to(ρ0/ρ)
1/3.

Under this condition, we calculate the total energy as a function of the bond length for
various values ofρ0/ρ. The results are shown in figures 7(a) and 7(b), respectively, for
ρ0/ρ = 1.3 and 1.4. Forρ0/ρ = 1.3, the lowest energy is achieved whenrsep/r1 = 1. This
corresponds to an infinite chain of Se in which the bond length is the same for all bonds.
For ρ0/ρ = 1.4, on the other hand, the lowest energy is realized whenrsep/r1 is larger than
unity.

The situation implied by these results is schematically illustrated in figure 8. When the
density is decreased, the bonds are stretched from their natural length. This of course costs
energy. It is worth noting, however, that, in order to avoid the stretching of the bonds,
some of bonds must be disrupted. When bonds are disrupted, the gains from the bonding
energies are inevitably lost. Therefore, Se atoms try to maintain all bonds even though they
are stretched and the bonding energies are small.

When the densityρ is decreased, the bonds must be stretched even more. Whenρ

becomes lower than some marginal value, there occurs a condition where the regaining of
the natural bond length at the expense of the disruption of some bonds costs less energy
than a stretched chain with all bonds intact.

This is the mechanism of bond disruption. In fact, from comparison of figure 6 and
figure 7, we can see that the NM-to-M transition in expanded Se is triggered by bond
disruption.
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6. What happens immediately after bond disruption?

Our calculations so far have been based on the structural model in which the bond lengths
for undisrupted bonds are all the same. It is expected, however, that the lengths of terminal
bonds will be different from those of internal bonds. In order to clarify this point, we
calculate the total energies for various sets of the bond length,r1, for internal bonds and
that, r ′1, for terminal bonds. The results of our calculations are given in figure 9. The
minimum of energy is achieved for the setr ′1 = 2.14 Å and r1 = 2.28 Å. This indicates
that the bond lengths of terminal bonds tend to be shorter than those of internal bonds.

These results therefore indicate that the terminal bonds are shortened when the disruption
of some bonds takes place.

7. What has been shown by our work?

The conclusions obtained from our work are summarized as follows.

(i) The mechanism of the NM-to-M transition in supercritical Se is triggered by the
partial disruption of bonds, which reduces the splitting between the bonding (σ ) and anti-
bonding (σ ∗) levels as a result of density decrease.

(ii) The lengths of undisrupted bonds are decreased after the disruption of some bonds.
The lengths of terminal bonds tend to be shorter than those of internal bonds.
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